lunes, 9 de febrero de 2009

EL TORNO PARALELO.






El torno paralelo, para cilindrar y roscar, trabaja la pieza situada horizontalmente; es el más utilizado, gracias a la universalidad de sus movimientos. Algunos tornos paralelos modernos tienen dimensiones verdaderamente considerables; se construyen en la actualidad tornos paralelos que, para una altura de puntos de 900 mm. Tienen una longitud útil de 18 metros.


A= La Bancada.
B= Cabezal Fijo.
C= Carro Principal de Bancada.
D= Carro de Desplazamiento Transversal.
E= Carro Superior porta Herramienta.
F= Porta Herramienta
G= Caja de Movimiento Transversal.
H= Mecanismo de Avance.
I= Tornillo de Roscar o Patrón.
J= Barra de Cilindrar.
K= Barra de Avance.
L= Cabezal Móvil.
M= Plato de Mordaza (Usillo).
N= Palancas de Comando del Movimiento de Rotación.
O= Contrapunta.
U= Guía.
Z= Patas de Apoyo.

PARTES DE UN TORNO PARALELO.
la función principal de un torno es suministrar un medio para hacer girar una pieza contra una herramienta de corte y, de esta manera, arrancar metal. Todos los tornos, sin importar su diseño o tamaño, son básicamente iguales y realizan tres funciones que consisten en proporcionar:
Un soporte para los accesorios del torno o la pieza.Una manera de sostener y hacer girar la pieza.Un medio para sostener y mover la herramienta de corte.

BANCADA

Es una pieaz fundida pesada y hasta hecha para soportar las partes de trabajo del torno. En su parte superior están maquinadas las gulas con las que se dirigen y alinean las partes principales del mismo. Muchos tornos se fabrican con guías templadas de fragua y rectificadas con el fin de reducir el desgaste y mantener la precisión.
La bancada sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal.


Observe que la bancada de este torno tiene guías planas y prismáticas o en V.

CABEZAL
Esta sujeto al lado izquierdo de la bancada. El husillo del cabezal, una flecha cilíndrica hueca apoyada en cojinetes, proporciona una transmisión del motor a los dispositivos para sostener la pieza. Para sostener e impulsar el trabajo, puede ajustarse un punto vivo y manguito, un plato plano o cualquier otro tipo de plato a la nariz del husillo. El punto vivo tiene una punta de 60° que suministra una superficie de cojinete para que la pieza gire entre los puntos.
Los tornos más modernos están equipados con engranes y el husillo a impulsado por una serie de ellos que m encuentran en el cabezal. Esta disposición permite obtener varias velocidades del husillo para ajustarse a tipos y tamaños diferentes de la pieza.
La palanca de inversión del avance puede colocarse en tres posiciones: la de arriba hace que la barra alimentadora y el tornillo principal de avance se muevan hacia adelante, la central es neutra y la de abajo invierte la dirección de movimiento de la barra y del tornillo.

CAJA DE ENGRANES DE CAMBIO RÁPIDO
Esta caja, la cual contiene varios engranes de tamaños diferentes, hace posible dar a la barra alimentadora y al tornillo principal de avance varias velocidades para las operaciones de torneado y de roscado. La barra alimentadora y el tornillo de avance constituyen la transmisión para el carro principal al embragar la palanca de avance automático o la palanca de tuerca dividida.

CARRO PRINCIPAL
Soporta la herramienta de corte y se emplea para moverla a lo largo de la bancada en las operaciones de torneado. El carro consta de tres partes principales: el asiento, la palanca delantal y el cursor transversal.El asiento, una pieza fundida con forma de H que se encuentra montada sobre la parte superior de las guías del torno, da soporte al carro transversal, el cual proporciona el movimiento transversal a la herramienta de corte. El soporte combinado (u orientable) se emplea para sostener la herramienta de corte y se le puede hacer girar hasta formar cualquier ángulo horizontal para realizar las operaciones de torneado cónico. El cursor transversal y el soporte combinado se mueven por medio de tornillos de avance. Cada uno de ellos tiene un tambor graduado para poder hacer ajustes exactos de las herramientas de corte.La placa delantal está sujeta al asiento y aloja los mecanismos de avance, los cuales dan lugar a un avance automático del carro. Se utiliza la palanca de avance automático para embragar el avance deseado al carro. La manivela del carro puede hacerse girar a mano para que el carro se mueva a lo largo de la bancada. Esta manivela está conectada a un engrane que se acopla a una cremallera sujeta a la bancada. El émbolo direccional de avance puede colocarse en tres posiciones: en la posición adentro embraga el avance longitudinal del carro, la central o neutra se emplea en el roscado, para permitir el embrague de la palanca de tuerca dividida; la posición afuera sirve cuando se requiere un avance transversal automático.



CABEZA MÓVIL
Está formada por dos unidades. La mitad superior puede ajustarse sobre la base por medio de dos tornillos, a fin de alinear los puntos del cabezal móvil y del cabezal fijo cuando se va a realizar torneado cilíndrico. También pueden emplearse estos tornillos para descentrar el cabezal móvil con el fin de realizar torneado cilíndrico entre los puntos. El cabezal móvil puede fijarse en cualquier posición a lo largo de la bancada si se aprieta la palanca o tuerca de sujeción. Uno de los extremos del punto muerto es cónico para que pueda ajustarse al husillo del cabezal móvil, mientras que el otro extremo tiene una punta de 60° para dar un apoyo de cojinete al trabajo que se tornea entre los puntos. En el husillo de este cabezal también pueden sostenerse otras herramientas estándar de mango cónico, corno los escariadores y las brocas. Se emplea una palanca de sujeción del husillo, o manija de apriete, para mantener al husillo en una posición fija. La manivela mueve al husillo hacia adentro y hacia afuera de la pieza fundida que constituye el cabezal móvil: también puede emplearse para realizar avance manual en las operaciones de taladrado y escariado.
El contrapunto puede moverse y fijarse en diversas posiciones a lo largo. La función primaria es servir de apoyo al borde externo de la pieza de trabajo.

El cabezal móvil o contracabezal esta apoyado sobre las guías de la bancada y se puede desplazar manualmente a lo largo de ellas según la longitud de la pieza a mecanizar, llevado al punto deseado se bloquea su posición con la palanca (T6).Mediante el volante (T1) se puede avanzar o retroceder el contrapunto (T5) sobre el cuerpo del contracabezal (T3), este desplazamiento se puede bloquear impidiendo que retroceda con la palanca (T2). En este contracabezal la base (T4) y el cuerpo (T3) son piezas distintas fijadas una a otra mediante tornillos, que pueden ser aflojados y permitir un cierto desplazamiento transversal del cuerpo respecto a su base, esta operación se puede hacer para mecanizar conos de pequeño ángulo de inclinación

LOS CARROS.


CARROS PORTAHERRAMIENTASConsta del carro principal, que produce los movimientos de avance y profundidad de pasada, el carro transversal, que se desliza transversalmente sobre el carro principal, y el carro superior orientable, formado a su vez por tres piezas: la base, el charriot y el portaherramientas. Su base está apoyada sobre una plataforma giratoria para orientarlo en cualquier dirección.


Detalle del carro potaherramientasEn la imagen se puede ver en detalle el carro de un torno paralelo, el carro principal
(4) esta apoyado sobre las guías de la bancada y se mueve longitudinalmente por ellas,En la parte delantera esta el cuadro de mecanismos
(5) el volante (5a) permite desplazarlo manualmente a derecha o izquierda, el embrague de roscar
(5b) tiene dos posiciones desembragado o embragado en esta posición al carro se mueve longitudinalmente a velocidad constante por el husillo de roscar. El embrague de cilindrar
(5c) tiene tres posiciones cilindrar desembragado y refrentar, la velocidad de avance vendrá fijada por el husillo de cilindrar. En este panel de mandos se puede conectar uno u otro automático, pero no se puede modificar ni la velocidad de avance ni el sentido del movimiento que tendrá que fijarse en la caja de avances y transmitido al carro mediante el husillo de roscar o de cilindrar según corresponda.El carro transversal
(3) esta montado y ajustado en cola de milano sobre el caro longitudinal y se puede desplazar transversalmente, de forma manual con la manivela
(3b) o en automático refrentando.Sobre el carro transversal esta el carro orientable
(2) este carro se puede girar sobre si mismo un ángulo cualesquiera marcado en la escala
(2b), mediante la manivela
(2a) este carro se puede avanzar o retroceder.Sobre el carro orientable, esta la toreta portaherramientas
(1) donde se monta la cuchilla

CARRO LONGITUDINAL.
El carro longitudinal es el cual tiene como desplazamiento la bancada, este carro nos proporciona el movimiento a través de un engrane con la cremallera y un tornillo sin fin, cuenta con un automático el cual es operado por medio de la barra colisa, este automático sirve para hacer la operación de roscado. El volante tiene una graduación para que uno mida la profundidad que se le da a los cortes.

CARRO TRANSVERSAL .
Este Carro cuenta con un movimiento transversal a eso debe su nombre, también tiene una manivela graduada, cuenta con el carro automático, y sobre él esta montado el carro auxiliar.

CARRO AUXILIAR.

El carro auxiliar es el cual tiene la responsabilidad para realizar el tallado de los conos variando el ángulo de inclinación del mismo, este esta regulado por una placa graduada y para su fijación del carro cuenta por lo regular con 4 tornillos. Sobre este se encuentra la tortea portaherramientas.




EL TORNO TIENE CUATRO COMPONENTES PRINCIPALES:

Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal.
Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de unidad de avance y el selector de sentido de avance. Además sirve para soporte y rotación de la pieza de trabajo que se apoya en el husillo.
Contrapunto: el contrapunto es el elemento que se utiliza para servir de apoyo y poder colocar las piezas que son torneadas entre puntos, así como otros elementos tales como porta broca o broca para hacer taladros en el centro de los ejes. Este contrapunto puede moverse y fijarse en diversas posiciones a lo largo de la bancada.Carros portaherramientas: consta del carro principal, que produce los movimientos de avance y profundidad de pasada y del carro transversal, que se desliza transversalmente sobre el carro principal. En los tornos paralelos hay además un carro superior orientable, formado a su vez por tres piezas: la base, el charriot y la porta herramientas. Su base está apoyada sobre una plataforma giratoria para orientarlo en cualquier dirección.
cabezal giratorio o chuck : Su función consiste en sujetar la pieza a maquinar, hay varios tipos como el chuck independiente de 4 mordazas o el universal mayormente empleado en el taller mecánico al igual hay cuck magnéticos y de seis mordazas,

martes, 4 de noviembre de 2008

FRESADORA
















FRESADORA UNIVERSAL CON SUS ACCESORIOS.



Una fresadora es una máquina herramienta utilizada para realizar mecanizados por arranque de viruta mediante el movimiento de una herramienta rotativa de varios filos de corte denominada fresa.[] En las fresadoras tradicionales, la pieza se desplaza acercando las zonas a mecanizar a la herramienta, permitiendo obtener formas diversas, desde superficies planas a otras más complejas.
Inventadas a principios del
siglo XIX, las fresadoras se han convertido en máquinas básicas en el sector del mecanizado. Gracias a la incorporación del control numérico, son las máquinas herramientas más polivalentes por la variedad de mecanizados que pueden realizar y la flexibilidad que permiten en el proceso de fabricación. La diversidad de procesos mecánicos y el aumento de la competitividad global han dado lugar a una amplia variedad de fresadoras que, aunque tienen una base común, se diferencian notablemente según el sector industrial en el que se utilicen.[2] Asimismo, los progresos técnicos de diseño y calidad que se han realizado en las herramientas de fresar, han hecho posible el empleo de parámetros de corte muy altos, lo que conlleva una reducción drástica de los tiempos de mecanizado.
Debido a la variedad de mecanizados que se pueden realizar en las fresadoras actuales, al amplio número de máquinas diferentes entre sí, tanto en su
potencia como en sus características técnicas, a la diversidad de accesorios utilizados y a la necesidad de cumplir especificaciones de calidad rigurosas, la utilización de fresadoras requiere de personal cualificado profesionalmente, ya sea programador, preparador o fresador.
El empleo de estas máquinas, con elementos móviles y cortantes, así como líquidos
tóxicos para la refrigeración y lubricación del corte, requiere unas condiciones de trabajo que preserven la seguridad y salud de los trabajadores y eviten daños a las máquinas, a las instalaciones y a los productos finales o semielaborados.














ALMACÉN DE EJES PORTAFRESAS:



Las fresas pueden clasificarse según el mecanismo de sujeción al portaherramientas en fresas con mango cónico, fresas con mango cilíndrico y fresas para montar en árbol.Las fresas con mango cónico, a excepción de las fresas grandes, en general se montan al portaherramientas utilizando un mandril o un manguito adaptador intermedio, cuyo alojamiento tiene la misma conicidad que el mango de la fresa. Las conicidades utilizadas suelen ser las correspondientes a los conos ISO o a los conos Morse, existiendo también otros tipos menos utilizados en fresadoras como los conos Brown y Sharpe.Las fresas con mango cilíndrico se fijan al portaherramientas utilizando mandriles con pinzas. Algunas fresas tienen un agujero en el mango y se fijan empleando mangos que se adaptan por un lado a la fresa mediante un roscado o utilizando un eje prisionero y por el otro lado disponen de un cono para montarse al husillo de la máquina.Las fresas para montaje sobre árbol tienen un agujero central para alojar el eje portaherramientas, cuyo diámetro está normalizado. Estas fresas disponen de un chavetero para asegurar la rotación de la herramienta y evitar que patinen. Para posicionar axialmente estas fresas en el eje, se emplean unos casquillos separadores de anchuras normalizadas. Además, en caso de necesidad pueden montarse varias fresas simultáneamente en lo que se denomina un tren de fresas. Para el cambio manual de los ejes portafresas se recurre a sistemas clásicos de amarre con tirante roscado, pero cada vez es más utilizado el apriete neumático o hidráulico debido a la rapidez con la que se realiza el cambio.Las fresadoras de control numérico incorporan un almacén de herramientas y disponen de un mecanismo que permite el cambio de herramientas de forma automática según las órdenes programadas.para poder orientar la herramienta existen varios tipos de dispositivos, como el cabezal Huré, el cabezal Gambin o las platinas orientables





CABEZAL UNIVERSAL:



El cabezal vertical universal Huré es un mecanismo que aumenta las prestaciones de una fresadora universal y es de aplicación para el fresado horizontal, vertical, radial en el plano vertical, angular (inclinado) en un plano vertical perpendicular a la mesa de la fresadora y oblicuo o angular en el plano horizontal. Este mecanismo es de gran aplicación en las fresadoras universales y no se utiliza en las fresadoras verticales.Consta de dos partes: la primera, con el árbol portaherramientas, se une con la otra parte del cabezal según una corredera circular inclinada 45º respecto a la horizontal, y la segunda se une mediante una corredera circular vertical con la parte frontal de la columna de la fresadora, donde se acopla al husillo principal de la máquina. El cabezal está dispuesto para incorporarle herramientas de fresar, brocas y escariadores mediante pinzas, portabrocas y otros elementos de sujeción de herramientas. La velocidad de giro del husillo de este accesorio es la misma que la del husillo principal de la fresadora. No son adecuados para las operaciones con herramientas grandes de planear.







MECANISMO DIVISOR UNIVERSAL:

Para conseguir una correcta fijación de las piezas en la mesa de trabajo de una fresadora se utilizan diversos dispositivos. El sistema de sujeción que se adopte debe permitir que la carga y la descarga de las piezas en la mesa de trabajo sean rápidas y precisas, garantizar la repetibilidad de las posiciones de las piezas y su amarre con una rigidez suficiente. Además, el sistema de sujeción empleado debe garantizar que la herramienta de corte pueda realizar los recorridos durante las operaciones de corte sin colisionar con ningún utillaje.[]Existen dos tipos principales de dispositivos de fijación: las bridas de apriete y las mordazas, siendo estas últimas las más usuales. Las mordazas empleadas pueden ser de base fija o de base giratoria. Las mordazas de base giratoria están montadas sobre un plato circular graduado. Mordazas pueden ser de accionamiento manual o de accionamiento hidráulico. Las mordazas hidráulicas permiten automatizar la apertura y el cierre de las mismas así como la presión de apriete.[] Las mesas circulares, los platos giratorios y los mecanismos divisores son elementos que se colocan entre la mesa de la máquina y la pieza para lograr orientar la pieza en ángulos medibles.Además, hay otros dispositivos que facilitan el apoyo como ranuras en V para fijar redondos o placas angulares para realizar chaflanes y utillajes de diseño especial. Al fijar una pieza larga con un mecanismo divisor pueden utilizarse un contrapunto y lunetas. Para la fijación de las piezas y los dispositivos que se utilizan, las mesas disponen de unas ranuras en forma de T en las cuales se introducen los tornillos que fijan los utillajes y dispositivos utilizados. También es posible utilizar dispositivos magnéticos que utilizan imanes.Las fresadoras de control numérico pueden equiparse con dos mesas de trabajo, lo cual hace posible la carga y descarga de las piezas al mismo tiempo que se está mecanizando una nueva pieza con el consiguiente ahorro de tiempo. La colocación o el giro de la mesa o de sus accesorios a la posición de trabajo pueden programarse con funciones específicas en los programas de control numérico.MECANISMO DIVISORUn mecanismo divisor es un accesorio de las máquinas fresadoras y de otras máquinas herramientas como taladradoras y mandrinadoras. Este dispositivo se fija sobre la mesa de la máquina y permite realizar operaciones espaciadas angularmente respecto a un eje de la pieza a mecanizar. Se utiliza para la elaboración de engranajes, prismas, escariadores, ejes ranurados, etc.La pieza a mecanizar se acopla al eje de trabajo del divisor, entre el punto del divisor y un contrapunto. Al fresar piezas esbeltas se utilizan también lunetas o apoyos de altura regulable para que las deformaciones no sean excesivas. El divisor directo incorpora un disco o platillo con varias circunferencias concéntricas, en cada una de las cuales hay un número diferente de agujeros espaciados regularmente. En uno de estos agujeros se posiciona un pasador que gira solidariamente con la manivela del eje de mando. Si el divisor está automatizado, la división se realiza de forma automática, utilizando un disco apropiado para cada caso. Este sistema se emplea en mecanizar grandes cantidades de ejes ranurados por ejemplo. La relación de transmisión entre el eje de mando y el eje de trabajo depende del tipo de mecanismo divisor que se utilice. Hay tres tipos de mecanismos divisores: divisor directo, divisor semiuniversal y divisor universal.Un divisor directo tiene un árbol que, por un extremo tiene una punta cónica para centrar el eje la pieza, y por el otro se acciona directamente por la manivela. Algunos de estos divisores, en lugar de tener discos intercambiables con agujeros circunferenciales, tienen ranuras periféricas y el pasador de retención se sitúa perpendicularmente al eje de mando.Un divisor semiuniversal se utiliza básicamente para mecanizar ejes y engranajes de muchos dientes cuando es posible establecer una relación exacta entre el movimiento de giro de la pieza y el giro de la palanca sobre el platillo de agujeros. Para que ello sea posible, este tipo de divisor incorpora un mecanismo interior de tornillo sin fin y rueda helicoidal cuya relación de transmisión (i) usualmente es de 40:1 ó 60:1, así como varios discos intercambiables. En estos casos, la manivela de mando debe dar 40 ó 60 vueltas para completar una vuelta en el eje de trabajo del divisor. Para girar el eje de trabajo una fracción de vuelta de valor determinado debe calcularse previamente el giro que ha de realizar la manivela. Por ejemplo, para el tallado de un piñón de 20 dientes, la manivela debe girar 40/20 = 2 vueltas para avanzar de un diente al siguiente. Si se desea tallar un engranaje de 33 dientes, la solución es 40/33 = 1+7/33, con lo cual hay que instalar un platillo que tenga 33 agujeros y habrá que dar un giro a la manivela de una vuelta completa más 7 agujeros del platillo de 33 agujeros.El divisor universal es de constitución parecida al divisor semiuniversal y se diferencia de este último en que incorpora un tren exterior de engranajes intercambiables que permite realizar la división diferencial y tallar engranajes helicoidales cuando se establece una relación de giro del plato divisor con el avance de la mesa de la fresadora. La división diferencial se utiliza cuando el engranaje que se desea tallar tiene un número de dientes que no es posible hacerlo de forma directa con los platillos disponibles porque no se dispone del número de agujeros que puedan conseguir un cociente exacto entre el giro del eje del divisor y el de la manivela del platillo.[]Para el mecanizado de grandes producciones de ejes ranurados o escariadores, existen mecanismos divisores automáticos con discos ranurados según el número de estrías de los ejes. Estos discos agilizan el trabajo de forma considerable. El tallado de engranajes con estos mecanismos apenas se utiliza en la actualidad porque existen máquinas para el tallado de engranajes que consiguen mayores niveles de calidad y productividad. Algunas fresadoras modernas de control numérico (CNC) disponen de mesas giratorias o cabezales orientables para que las piezas puedan ser mecanizadas por diferentes planos y ángulos de aproximación, lo cual hace innecesario utilizar el mecanismo divisor en estas máquinas.









FRESADO DE ALUMINIO UTILIZANDO TALADRINA :

En la actualidad el fresado en seco de ciertos materiales es completamente viable cuando se utilizan herramientas de metal duro, por eso hay una tendencia reciente a efectuar los mecanizados en seco siempre que la calidad de la herramienta lo permita. La inquietud por la eficiencia en el uso de refrigerantes de corte se despertó durante los años 1990, cuando estudios realizados en empresas de fabricación de componentes para automoción en Alemanipusieron de relieve el coste elevado del ciclo de vida del refrigerante, especialmente en su reciclado.
Sin embargo, el mecanizado en seco no es adecuado para todas las aplicaciones, especialmente para taladrados, roscados y mandrinados para garantizar la evacuación de las virutas, especialmente si se utilizan fresas de acero rápido. Tampoco es recomendable fresar en seco materiales pastosos o demasiado blandos como el aluminio o el acero de bajo contenido en carbono ya que es muy probable que los filos de corte se embocen con el material que cortan, formándose un filo de aportación que causa imperfecciones en el acabado superficial, dispersiones en las medidas de la pieza e incluso roturas de los filos de corte. En el caso de mecanizar materiales poco dúctiles que tienden a formar viruta corta, como la fundición gris, la taladrina es beneficiosa como agente limpiador, evitando la formación de nubes tóxicas de aerosoles. La taladrina es imprescindible al fresar materiales abrasivos como el acero inoxidable.En el fresado en seco la maquinaria debe estar preparada para absorber sin problemas el calor producido en la acción de corte. Para evitar excesos de temperatura por el sobrecalentamiento de husillos, herramientas y otros elementos, suelen incorporarse circuitos internos de refrigeración por aceite o aire.Salvo excepciones, el fresado en seco se ha generalizado y ha servido para que las empresas se hayan cuestionado usar taladrina únicamente en las operaciones necesarias y con el caudal necesario. Es necesario evaluar con cuidado operaciones, materiales, piezas, exigencias de calidad y maquinaria para identificar los beneficios de eliminar el aporte de refrigerante.


NORMAS DE SEGURIDAD EN EL TRABAJO CON FRESADORAS:

manipular una fresadora, hay que observar una serie de requisitos para que condiciones de trabajo mantengan unos niveles adecuados de seguridad y salud. Los riesgos más frecuentes con este tipo de máquinas son contactos accidentales con la herramienta o con la pieza en movimiento, atrapamientos por los órganos de movimiento de la máquina, proyecciones de la pieza, de la herramienta o de las virutas, dermatitis por contacto con los líquidos refrigerantes y cortes al manipular herramientas o virutas.Para los riesgos de contacto y atrapamiento deben tomarse medidas como el uso de pantallas protectoras, evitar utilizar ropas holgadas, especialmente en lo que se refiere a mangas anchas o corbatas y, si se trabaja con el pelo largo, llevarlo recogido.Para los riesgos de proyección de parte o la totalidad de la pieza o de la herramienta, generalmente por su ruptura, deben utilizarse pantallas protectoras y cerrar las puertas antes de la operación.
Para los riesgos de dermatitis y cortes por la manipulación de elementos, deben utilizarse guantes de seguridad. Además, los líquidos de corte deben utilizarse únicamente cuando sean necesarios.Además, la propia máquina debe disponer de elementos de seguridad, como enclavamientos que eviten la puesta en marcha involuntaria; botones de parada de emergencia de tipo seta estando el resto de pulsadores encastrados y situados fuera de la zona de peligro. Es recomendable que los riesgos sean eliminados tan cerca de su lugar de generación y tan pronto como sea posible, disponiendo de un sistema de aspiración en la zona de corte, pantallas de seguridad y una buena iluminación. Estas máquinas deben estar en un lugar nivelado y limpio para evitar caídas. En las máquinas en las que, una vez tomadas las medidas de protección posibles, persista un riesgo residual, éste debe estar adecuadamente señalizado mediante una señalización normalizada.



lunes, 29 de septiembre de 2008

1) CLASIFICACIÓN SAE DE ACEROS

La inmensa variedad de aceros que pueden obtenerse por los distintos porcentajes de carbono y sus aleaciones con elementos como el cromo, níquel, molibdeno, vanadio, etc., ha provocado la necesidad de clasificar mediante nomenclaturas especiales, que difieren según la norma o casa que los produce para facilitar su conocimiento y designación.

La sae emplea, a tal fin, números compuestos de cuatro o cinco cifras, según los casos, cuyo ordenamiento caracteriza o individualiza un determinado acero.

El significado de dicho ordenamiento es el siguiente:

Primera cifra 1 caracteriza a los aceros al carbono
Primera cifra 2 caracteriza a los aceros al níquel
Primera cifra 3 caracteriza a los aceros al cromo-níquel
Primera cifra 4 caracteriza a los aceros al molibdeno
Primera cifra 5 caracteriza a los aceros al cromo
Primera cifra 6 caracteriza a los aceros al cromo-vanadio
Primera cifra 7 caracteriza a los aceros al tungsteno
Primera cifra 9 caracteriza a los aceros al silicio-manganeso

En los aceros simples (un solo elemento predominante), las dos últimas cifras establecen el porcentaje medio aproximado de C en centésimo del 1%, cuando el tenor del mismo no alcanza al 1%.- Por último, la cifra intermedia indica el porcentaje o, en forma convencional, el contenido preponderante de la aleación, tal el caso de los aceros al Cr-Ni, en los que la segunda cifra corresponde al % de Ni.

Mediante el número SAE, los aceros al carbono, de hasta 1% de C, pueden ser fácilmente identificados; así un SAE 1025 indica:

Primera cifra 1 acero al carbono
Segunda cifra 0 ningún otro elemento de aleación predominante
Ultimas cifras 25 0,25% de carbono medio aproximado de carbono

Acero SAE 1020:
Composición: 0.20%C; 0.60- 0.90%Mn; 0.04%máx. P; 0,05% máx. S.
Ataque: Picral (composición: ácido pícrico 4grs., etil o alcohol de metileno (95% o absoluto) 100ml). Aumento: 200X

LA ESTRUCTURA RECOCIDAD




Consiste en colonias de perlita (oscuro), en una matriz ferrítica (claro).
· Acero SAE 1080
Composición: 0.8%C; 0,6-0,9%Mn.
Ataque: Picral (composición: ácido pícrico 4grs., etil o alcohol de metileno (95% o absoluto) 100ml.) Aumento: 200X
Barra de acero, laminada en caliente, austenizada a 1049ºC por media hora y enfriada en el horno (27,7ºC por hora). La estructura es perlítica, con algo de cementita esferoidal.
· Acero SAE 1095
Composición: 0.95%C; 0.3-0.5%Mn.
Ataque: Picral (composición: ácido pícrico 4grs., etil o alcohol de metileno (95% o absoluto) 100ml.) Aumento: 200X
Acero laminado en frío y recocido a 727ºC por 30 hrs. La estructura que se observa es predominantemente perlítica (parecido a huellas digitales), con una red de cementita pro-eutectoide.



2) CLASIFICACIÓN DE LAS MÁQUINAS-HERRAMIENTAS.

Las máquinas-herramientas tienen la misión fundamental de dar forma a las piezas por arranque de material.
El arranque de material se realiza gracias a una fuerte presión de la herramienta sobre la superficie de la pieza, estando:

· Bien la pieza
· Bien la herramienta
·  bien la pieza y la herramienta

Animadas de movimiento.
Según sea la naturaleza del movimiento de corte, las máquinas-herramientas se clasifican en:

• Máquinas-herramientas de movimiento circular.
• Con el movimiento de corte en la pieza: Torno paralelo, torno vertical,
• Con el movimiento de corte en la herramienta: Fresadora, taladradora,
Mandrinadora.
• Máquinas-herramientas de movimiento rectilíneo: Cepillo, mortajadora, brochadora

Las máquinas-herramientas de movimiento circular tienen una mayor aplicación en la industria debido a que su capacidad de arranque de material es superior a las máquinas con movimiento de corte rectilíneo y por tanto su rendimiento.
Lo mismo las máquinas de movimiento rectilíneo que las de movimiento circular se pueden “controlar”:

• Por un operario (máquinas manuales).
• Neumática, hidráulica o eléctricamente.
• Mecánicamente (por ej. Mediante levas).
• Por computadora (Control numérico: CN)

Elección de los aceros para herramientas:
En la mayoría de los casos nos encontramos con que son varios los tipos e incluso las familias de aceros que nos resolverían satisfactoriamente un determinado problema de herramientas, lo que hace que la selección se base en otros factores, tales como productividad prevista, facilidad de fabricación y costo. En última instancia es el costo de las herramientas por unidad de producto fabricado el que determina la selección de un determinado acero.
Los aceros de herramientas, además de utilizarse para la fabricación de elementos de máquinas, se emplean para la fabricación de útiles destinados a modificar la forma, tamaño y dimensiones de los materiales por arranque de viruta, cortadura, conformado, embutición, extrusión, laminación y choque.
De todo lo dicho se deduce que, en la mayoría de los casos, la dureza, tenacidad, resistencia al desgaste y dureza en caliente constituyen los factores más importantes a considerar en la elección de los aceros de herramientas. No obstante, en cada caso en particular hay que considerar también otros muchos factores, tales como la deformación máxima que puede admitirse en la herramienta; la descarburización superficial tolerable; la templabilidad o penetración de la dureza que se puede obtener; las condiciones en que tiene que efectuarse el tratamiento térmico, así como las temperaturas, atmósferas e instalaciones que requiere dicho tratamiento; y, finalmente, la maquinabilidad.

Clasificación:

WS. Acero de herramientas no aleado. 0.5 a 1.5% de contenido de carbón. Soportan sin deformación o pérdida de filo 250°C. También se les conoce como acero al carbono.
SS. Aceros de herramienta aleados con wolframio, cromo, vanadio, molibdeno y otros. Soporta hasta 600°C. También se les conoce como aceros rápidos.
HS. Metales duros aleados con cobalto, carburo de carbono, tungsteno, wolframio y molibdeno. Son pequeñas plaquitas que se unen a metales corrientes para que los soporten. Soportan hasta 900°C.
Diamante. Material natural que soporta hasta 1800°C. Se utiliza como punta de algunas barrenas o como polvo abrasivo.
Materiales cerámicos. Se aplica en herramientas de arcilla que soportan hasta 1500°C. Por lo regular se utilizan para terminados


Los aceros de herramientas más comúnmente utilizados han sido clasificados en seis grupos principales, y dentro de ellos en subgrupos, todos los cuales se identifican por una letra en la forma siguiente:
Aceros de temple al agua W
Aceros para trabajos en caliente H Aceros del tipo H
Aceros rápidos T Aceros al tungsteno
M Aceros al molibdeno
Aceros para usos especiales L Aceros de baja aleación
F Aceros al tungsteno
P Aceros para moldes
Aceros para trabajos de choque S
Aceros para trabajos en frío O Aceros de temple en aceite
A Aceros de media aleación temple aire
D Aceros altos en cromo y en carbono

Clasificación de los aceros aleados de acuerdo con su utilización
Aceros en los que tiene una gran importancia la templabilidad:
Aceros de gran resistenciaAceros de cementaciónAceros de muelles Aceros indeformables
Aceros de construcción:
Aceros de gran resistencia Aceros de cementaciónAceros para muellesAceros de nitruracionAceros resistentes al desgasteAceros para imanesAceros para chapa magneticaAceros inoxidables y resistentes al calor
Aceros de herramientas:
Aceros rápidosAceros de corte no rápidosAceros indeformablesAceros resistentes al desgasteAceros para trabajos de choqueAceros inoxidables y resistentes al calor.

.
Desgaste
Es la degradación física (pérdida o ganancia de material, aparición de grietas, deformación plástica, cambios estrucuturales como transformación de fase o recristalización, fenómenos de corrosión, etc.) debido al movimiento entre la superficie de un material sólido y uno o varios elementos de contacto.[24] El desgaste sobre una superficie se puede cuantificar midiendo la pérdida de material según su desplazamiento relativo. Existen diferentes tipos de desgaste en dependencia de la situación encontrada. Varios modelos de desgaste incluyen adhesión, abrasión, fatiga y corrosión. El desgaste aumenta cuando existe presión y movimiento entre superficies. Esto es de gran importancia debido a que es un factor determinante en la vida y desempeño de las máquinas que están expuestas a este tipo de deterioro, pudiendo variar los costos de manera verdaderamente significativa. La región más sensible a las agresiones del entorno es la superficie de un material. En comparación con otras causas de deterioro de un material, los problemas que afectan a la superficie debido al desgaste requieren un consumo energético mínimo debido a que son sólo los átomos de unas pocas capas superficiales y los enlaces que los unen entre sí, los que deben hacer frente a las fuerzas del entorno. El desgaste metálico es un fenómeno al cual están expuestos los metales, y que involucran el desplazamiento y el arranque de partículas en la superficie del metal, el tema de desgaste es algo complicado de estudiar debido a su complejidad y el número de factores necesarios para describirlo (Lansdown and Price, 1986). Además del efecto que tiene la lubricación en el proceso de desgaste, existen también otros factores muy importantes. Entre los distintos factores se tienen los metalúrgicos, los cuales involucran la dureza, tenacidad, constitución, estructura y composición química. También se tienen los factores operacionales, tales como los materiales en contacto, el modo y tipo de carga, la velocidad, la temperatura, la rugosidad superficial y la distancia recorrida. Por otro lado,se encuentran los factores externos como lo es la corrosión (Lansdown and Price, 1986). Según Lansdown and Price (1986): En general el incremento de la dureza disminuye el desgaste en un metal, pero la relación entre estos dos fenómenos es compleja. En el desgaste abrasivo hay evidencias de que el valor del desgaste en metales comercialmente puros y aceros tratados térmicamente es inversamente proporcional a su dureza. Hay una tendencia general de que cuando se incrementa la carga, se incrementa también el valor del desgaste; se habla también de un punto crítico en la mayoría de los sistemas, en los que más allá de haber un aumento en el valor del desgaste mas bien ocurre primero un incremento de la carga. El valor del desgaste puede cambiar considerablemente con el cambio de la velocidad, pero no existe una relación general entre el desgaste y la velocidad. Un incremento en la velocidad puede conducir a un incremento o decremento del desgaste dependiendo del efecto de la temperatura en la superficie del material.

Normalización de las diferentes clases de acero

Llave de acero aleado para herramientas
Como existe una variedad muy grande de clases de acero diferentes que se pueden producir en función de los elementos aleantes que constituyan la aleación, se ha impuesto, en cada país, en cada fabricante de acero, y en muchos casos en los mayores consumidores de aceros, unas Normas que regulan la composición de los aceros y las prestaciones de los mismos.
Por ejemplo en España actualmente están regulados por la norma UNE-EN 10020:2001 y antiguamente estaban reguladas por la norma UNE-36010.[25]
Existen otras normas reguladoras del acero, como la clasificación de AISI (de hace 70 años, y de uso mucho más extenso internacionalmente), ASTM,[26] DIN, o la ISO 3506.
A modo de ejemplo se expone la clasificación regulada por la norma UNE-36010, que ya ha sido sustituida por la norma UNE-EN10020:2001, y están editadas por AENOR:
Norma UNE-36010
La norma española UNE-36010 es una normalización o clasificación de los aceros para que sea posible conocer las propiedades de los mismos. Esta Norma indica la cantidad mínima o máxima de cada componente y las propiedades mecánicas que tiene el acero resultante.
En España, el Instituto del Hierro y del Acero (IHA) creó esta norma que clasifica a los aceros en cinco series diferentes a las que identifica por un número. Cada serie de aceros se divide a su vez en grupos, que especifica las características técnicas de cada acero, matizando sus aplicaciones específicas. El grupo de un acero se designa con un número que acompaña a la serie a la
3) Mecanizado duro

En ocasiones especiales, el tratamiento térmico del acero puede llevarse a cabo antes del mecanizado en procesos de arranque de virutas, dependiendo del tipo de acero y los requerimientos que deben ser observados para determinada pieza. Con esto, se debe tomar en cuenta que las herramientas desgaste apresurado en su vida útil. Estas ocasiones peculiares, se pueden presentar cuando las tolerancias de fabricación son tan estrechas que no se permita la inducción de calor en tratamiento por llegar a alterar la geometría del trabajo, o también por causa de la misma composición del lote del material (por ejemplo, las piezas se están encogiendo mucho por ser tratadas). En ocasiones es preferible el mecanizado después del tratamiento térmico, ya que la estabilidad óptima del material ha sido alcanzada y, dependiendo de la composición y el tratamiento, el mismo proceso de mecanizado no es mucho más difícil.
EL MECANIZADO POR ARRANQUE DE MATERIAL.
Para que se produzca el corte de material, es necesarias para dichos trabajos deben ser muy fuertes por llegar a sufrir preciso que

la herramienta y la pieza
la herramienta
la pieza

Estén dotados de unos
Movimientos de trabajo
Y de que estos movimientos de trabajo tengan una
Velocidad.
Los movimientos de trabajo necesarios para que se produzca el corte son:

.- Movimiento de corte

.- Movimiento de penetración

.-Movimiento de avance

Movimiento de corte (Mc): movimiento relativo entre la pieza y la herramienta.
Movimiento de penetración (Mp): es el movimiento que acerca la herramienta al material y regula su profundidad de penetración.
Movimiento de avance (Ma): es el movimiento mediante el cual se pone bajo la acción de la herramienta nuevo material a separar.
Los movimientos de trabajo en las distintas máquinas-herramientas convencionales son:


4) Herramientas de plaquitas de metal duro y cerámicas
Características de las plaquitas de metal duro

HERRAMIENTAS

Plaquita de tornear de metal
Herramientas de roscar y mandrinar. duro.

Herramienta de torneado exterior plaquita de widia cambiable.




Herramienta de torneado exterior plaquita de widia cambiable.
La calidad de las plaquitas de metal duro se selecciona teniendo en cuenta el material de la pieza, el tipo de aplicación y las condiciones de mecanizado.
La variedad de las formas de las plaquitas es grande y está normalizada. Asimismo la variedad de materiales de las herramientas modernas es considerable y está sujeta a un desarrollo continuo.[5]
Los principales materiales de herramientas para torneado son los que se muestran en la tabla siguiente.

ADECUACION SEGUN SEA EL MATERIAL


La adecuación de los diferentes tipos de plaquitas según sea el material a mecanizar se indican a continuación y se clasifican según una Norma ISO/ANSI para indicar las aplicaciones en relación a la resistencia y la tenacidad que tienen.

CODIGO DE CALIDADES DE PLAQUITAS